

Edexcel A2 Physics: Nuclear and Particle Physics – Calculation Practice

Praneel Physics

1. Calculate the mass of a neutron in kilograms, given that its mass is approximately 1.675×10^{-27} kg. (P)

Working and Answer:

Mass of neutron = 1.675×10^{-27} kg.

2. If a proton has a charge of $+1.6 \times 10^{-19}$ C, what is the total charge of 3 protons? (P)

Working and Answer:

$$\text{Total charge} = 3 \times 1.6 \times 10^{-19} \text{ C} = 4.8 \times 10^{-19} \text{ C.}$$

3. A radioactive isotope has a half-life of 5 years. If you start with 80 grams, how much will remain after 15 years? (P)

Working and Answer:

$$\text{After 15 years (3 half-lives): } \frac{80}{2^3} = \frac{80}{8} = 10 \text{ grams.}$$

4. Calculate the energy released when 1 kg of mass is converted to energy using $E = mc^2$.
(Use $c = 3 \times 10^8$ m/s) (P)

Working and Answer:

$$E = mc^2 = 1 \times (3 \times 10^8)^2 = 9 \times 10^{16} \text{ J.}$$

5. What is the binding energy of a helium-4 nucleus, given that its mass defect is 0.0304 u?
(Use 1 u = 931.5 MeV/c²) (P)

Working and Answer:

$$\text{Binding energy} = 0.0304 \times 931.5 \text{ MeV} = 28.34 \text{ MeV.}$$

6. A carbon-14 nucleus decays to nitrogen-14 by beta decay. If the decay constant λ is $1.21 \times 10^{-4} \text{ year}^{-1}$, calculate the half-life of carbon-14. (PP)

Working and Answer:

$$T_{1/2} = \frac{\ln(2)}{\lambda} = \frac{0.693}{1.21 \times 10^{-4}} \approx 5730 \text{ years.}$$

7. Calculate the total energy of a photon emitted during a transition from the $n=3$ to $n=2$ energy level in a hydrogen atom. (Use Rydberg constant $R_H = 1.097 \times 10^7 \text{ m}^{-1}$) (PP)

Working and Answer:

$$E = h \cdot f = h \cdot R_H \cdot \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = 6.626 \times 10^{-34} \cdot 1.097 \times 10^7 \cdot \left(\frac{1}{4} - \frac{1}{9} \right) \approx 1.89 \times 10^{-19} \text{ J.}$$

8. If a sample contains 1000 radioactive atoms and has a decay constant of 0.693 year^{-1} , how many atoms will remain after 1 year? (PP)

Working and Answer:

$$N = N_0 e^{-\lambda t} = 1000 e^{-0.693 \cdot 1} \approx 500 \text{ atoms.}$$

9. A particle has a rest mass of $0.511 \text{ MeV}/c^2$. Calculate its total energy when it is moving at $0.8c$. (PP)

Working and Answer:

$$E = \gamma mc^2, \gamma = \frac{1}{\sqrt{1 - (0.8)^2}} \approx 1.667, E \approx 1.667 \times 0.511 \text{ MeV} \approx 0.853 \text{ MeV.}$$

10. Calculate the radius of a nucleus with a mass number of 56 using the empirical formula $R = R_0 A^{1/3}$ where $R_0 = 1.2$ fm. (PP)

Working and Answer:

$$R = 1.2 \times 56^{1/3} \approx 1.2 \times 3.83 \approx 4.6 \text{ fm.}$$

11. A neutron star has a mass of 2.0×10^{30} kg and a radius of 10 km. Calculate its average density. (PPP)

Working and Answer:

$$\text{Density} = \frac{\text{mass}}{\text{volume}} = \frac{2.0 \times 10^{30}}{\frac{4}{3}\pi(10^3)^3} \approx 5.0 \times 10^{17} \text{ kg/m}^3.$$

12. If the energy of a gamma photon is 1.25 MeV, calculate its wavelength. (Use $E = \frac{hc}{\lambda}$) (PPP)

Working and Answer:

$$\lambda = \frac{hc}{E} = \frac{(6.626 \times 10^{-34})(3 \times 10^8)}{1.25 \times 1.6 \times 10^{-13}} \approx 1.58 \times 10^{-12} \text{ m.}$$

13. A particle has a kinetic energy of 10 MeV. Calculate its relativistic momentum. (PPP)

Working and Answer:

$$K.E. = \gamma mc^2 - mc^2 \Rightarrow \gamma = \frac{K.E. + mc^2}{mc^2}, p = \gamma mv. \text{ (Use } m = 0.511 \text{ MeV/c}^2\text{)}$$

14. Calculate the number of alpha particles emitted by a radioactive source with a decay rate of 200 decays per minute over 10 minutes. (PPP)

Working and Answer:

$$N = \text{decay rate} \times \text{time} = 200 \times 10 = 2000 \text{ alpha particles.}$$

15. A positron has a mass of 9.11×10^{-31} kg. Calculate its energy at rest. (PPP)

Working and Answer:

$$E = mc^2 = (9.11 \times 10^{-31})(3 \times 10^8)^2 \approx 8.19 \times 10^{-14} \text{ J.}$$

16. If a certain isotope has a decay constant of 0.1 day^{-1} , how long will it take for 75% of the sample to decay? (PPPP)

Working and Answer:

$$T = \frac{\ln(0.25)}{-\lambda} = \frac{\ln(0.25)}{-0.1} \approx 27.7 \text{ days.}$$

17. Calculate the energy released in the fusion of deuterium and tritium to form helium-4 and a neutron, given that the mass defect is 0.0187 u. (PPPP)

Working and Answer:

$$E = \Delta mc^2 = 0.0187 \times 931.5 \approx 17.4 \text{ MeV.}$$

18. A particle travels at $0.9c$. Calculate its relativistic mass compared to its rest mass. (PPPP)

Working and Answer:

$$\gamma = \frac{1}{\sqrt{1 - (0.9)^2}} \approx 2.294, \text{ Relativistic mass} = \gamma m_0.$$

19. If the radius of a nucleus is 7 fm , calculate its volume. (PPPP)

Working and Answer:

$$V = \frac{4}{3}\pi R^3 = \frac{4}{3}\pi(7 \times 10^{-15})^3 \approx 1.54 \times 10^{-43} \text{ m}^3.$$

20. A radioactive isotope has a half-life of 10 years. If you start with 160 grams, how much will remain after 30 years? (PPPP)

Working and Answer:

$$N = N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}} = 160 \left(\frac{1}{2}\right)^3 = 20 \text{ grams.}$$

21. Calculate the total energy of a system of 3 protons and 2 neutrons in MeV, given that the mass of a proton is $0.938 \text{ MeV}/c^2$ and a neutron is $0.939 \text{ MeV}/c^2$. (PPPPP)

Working and Answer:

$$E = (3 \times 0.938 + 2 \times 0.939) \text{ MeV} = 5.692 \text{ MeV.}$$

22. A particle has a total energy of 5 MeV and a rest mass of $0.5 \text{ MeV}/c^2$. Calculate its speed. (PPPPP)

Working and Answer:

$$E = \gamma mc^2 \Rightarrow \gamma = \frac{E}{mc^2}, v = c\sqrt{1 - \frac{1}{\gamma^2}}.$$

23. Calculate the energy required to remove a neutron from a nucleus with a binding energy of 8 MeV. (PPPPP)

Working and Answer:

$$E = 8 \text{ MeV} \text{ (energy required to remove the neutron).}$$

24. If a particle has a momentum of 1.0×10^{-22} kg m/s and a rest mass of $0.511 \text{ MeV}/c^2$, calculate its total energy. (PPPPP)

Working and Answer:

$$E^2 = (pc)^2 + (m_0c^2)^2, E = \sqrt{(1.0 \times 10^{-22} \cdot 3 \times 10^8)^2 + (0.511 \cdot 1.6 \times 10^{-13})^2}.$$

25. A nucleus undergoes alpha decay, emitting an alpha particle with a kinetic energy of 5 MeV. Calculate the recoil energy of the daughter nucleus. (PPPPP)

Working and Answer:

$$E_{\text{recoil}} = \frac{(m_{\text{alpha}})^2}{(m_{\text{alpha}} + m_{\text{daughter}})} \cdot KE_{\text{alpha}}.$$